オックスフォード・インストゥルメンツツの一部
拡張

OptistatDN

静的交換ガス試料環境の77 K 液体窒素浴、トップローディング式クライオスタット。

  • 温度範囲は77 K - 500 K

  • トップローディングプローブによる迅速な試料交換

  • 長い寒剤保持時間


お問い合わせ

  • 温度範囲 77 K - 500 K
  • 77 K までの初期冷却時間は約20分間
  • トップローディング試料プローブによる短い試料交換時間は、わずか5分間
  • 約15時間程度の長い寒剤保持時間により、終日にわたり機器の運用が可能
  • 集光を必要とする測定のための最高品質の光学アクセス(f/1)
  • 反射測定および透過測定を可能とする構成
  • 広い照明面積:直径15mmの窓開口部
  • 市販の分光分析装置に容易に組み込むことが可能なコンパクトサイズ
  • 試料への10-ピン電気配線により、即時測定が可能
  •  MercuryiTC 温度制御装置を装備
  • 1年間の標準保証

Low cryogen consumption: Brings significant benefits in terms of running cost

Quick experiments: A range of sample holders and probes, including liquid cuvettes sample holders and height adjust/rotate probes, are available

Simple: The experimental windows and sample holders can be easily changed

Versatile: A range of window materials are available. Please contact your local sales representative for more information

Software control: Oxford Instruments electronics products are controllable through the software using RS232, USB (serial emulation), TCP/IP or GPIB interfaces. LabVIEW function libraries and virtual instruments are provided for Oxford Instruments electronics products to allow PC-based control and monitoring. These can be integrated into a complete LabVIEW data acquisition system

Temperature range: 77.2 to 300 K, may be extended up to 500 K

Temperature stability: ± 0.1 K

Liquid nitrogen hold time: 15 hrs at 77 K (nominal)

Room temperature to base temperature: approx. 20 min

Sample change time: approx. 5 min (sample can be changed with the cryostat cold)

Weight: 5 kg

A typical system comprises of:

  • OptistatDN nitrogen cryostat
  • Sample holder and rod
  • Up to five sets of windows. (four radial; one axial). Each set includes two windows (radiation shield and outer case windows)
  • Mercury iTC temperature controller
  • High vacuum pumping system

UV / Visible spectroscopy: Experiments at low temperatures reveal the interaction between the electronic energy levels and vibrational modes in solids.

Infra-red spectroscopy: Low temperature IR spectroscopy is used to measure changes in interatomic vibrational modes as well as other phenomena such as the energy gap in a superconductor below its transition temperature.

Raman spectroscopy: Lower temperatures result in narrower lines associated with the observed Raman excitations.

Photoluminescence: At low temperatures, spectral features are sharper and more intense, thereby increasing the amount of information available.

ご興味ございますか?

その他アプリケーション

ナノマテリアルの物性評価低次元構造の物性評価モジュール光学分光法