オックスフォード・インストゥルメンツツの一部
拡張

OptistatCF

静的置換ガス試料環境の 4 K ヘリウムフロー型、トップローディング式クライオスタット。

  • 温度範囲は4 K~300 K

  • トップローディング試料プローブによる迅速な試料交換

  • 最高品質の光学アクセス


お問い合わせ

  • 温度範囲:3.4~300 K。高温窓オプションで上限500 Kまで拡張可能。ロータリーポンプ(非標準付属品)と併用した場合、下限2.2 Kまで拡張可能
  • 約25分で4.2Kまで冷却
  • トップローディングプローブを利用した試料交換時間は、わずか5分間
  • 低液体ヘリウム消費量:低損失移送用サイフォンを使用した場合、<0.55 L / 時
  • 反射測定および透過測定を可能とする構成
  • 集光を必要とする測定のための最高品質の光学アクセス
  • 広い照明面積:直径15mmの窓開口部
  • 市販の分光分析装置に容易に組み込むことが可能なコンパクトサイズ
  • 試料への10-ピン電気配線接続により、即時測定が可能
  • MercuryiTC 温度制御装置を装備

Low cryogen consumption: Brings significant benefits in terms of running cost

Quick experiments: A range of sample holders and probes, including liquid cuvettes sample holders and height adjust/rotate probes, are available

Simple: The experimental windows and sample holders can be easily changed

Versatile: A range of window materials are available. Please contact your local sales representative for more information

Superior performance: A dynamic exchange gas model, suitable for low conductivity or high heat load samples, is available. Please contact your local sales representative for more information

Software control: Oxford Instruments electronics products are controllable through the software using RS232, USB (serial emulation), TCP/IP or GPIB interfaces. LabVIEW function libraries and virtual instruments are provided for Oxford Instruments electronics products to allow PC-based control and monitoring. These can be integrated into a complete LabVIEW data acquisition system

Temperature range: 3.4 to 300 K, may be extended up to 500 K and down to 2.3 K

Temperature stability: ± 0.1 K

System may also be run with liquid nitrogen, temperature range: 77 to 500 K

Liquid helium consumption rate at 4.2 K: < 0.55 l/hr

Cool down consumption: 1.5 litre (nominal)

Room Temperature to base temperature: approx. 25 min with pre-cooled transfer siphon

Sample change time: approx. 5 min (sample can be changed with the cryostat cold)

Weight: 3.7 kg

A typical system comprises of:

  • Cryostat
  • Sample holder
  • Spectroscopy windows 
  • MercuryiTC temperature controller

UV / Visible spectroscopy: Experiments at low temperatures reveal the interaction between the electronic energy levels and vibrational modes in solids.

Infra-red spectroscopy: Low temperature IR spectroscopy is used to measure changes in interatomic vibrational modes as well as other phenomena such as the energy gap in a superconductor below its transition temperature.

Raman spectroscopy: Lower temperatures result in narrower lines associated with the observed Raman excitations.

Photoluminescence: At low temperatures, spectral features are sharper and more intense, thereby increasing the amount of information available.

ご興味ございますか?

その他アプリケーション

ナノマテリアルの物性評価低次元構造の物性評価モジュール光学分光法