オックスフォード・インストゥルメンツー事業部ページ
拡張

OptistatCF

連続ヘリウムフロー式光学測定用4Kクライオスタット。
試料熱交換ガス雰囲気。

  • 温度範囲:3.4 K~300 K

  • トップローディング方式のサンプルプローブにより、試料交換が短時間で可能

  • 優れた光学アクセス


お問い合わせ

  • 温度範囲:3.4~300 K。高温用窓オプションにより500 Kでの使用が可能。EPS40ロータリーポンプ使用時には2.2 Kまで到達可能
  • 約25分で4.2Kまで冷却
  • トップローディング方式のサンプルプローブにより、試料交換時間はわずか5分
  • 少ない液体ヘリウム消費量:<0.55 L/h (低損失トランスファーチューブ使用時)
  • 反射および透過の光学測定に対応
  • 集光が必要な測定に対応した、優れた光学アクセス
  • 広い照射面積:直径15 mmの窓開口部
  • コンパクトサイズのため、市販の分光器への組み込みが容易
  • 試料への10-ピン電気配線により、電気測定が可能
  • MercuryiTC 温度コントローラが付属

Low cryogen consumption: Brings significant benefits in terms of running cost

Quick experiments: A range of sample holders and probes, including liquid cuvettes sample holders and height adjust/rotate probes, are available

Simple: The experimental windows and sample holders can be easily changed

Versatile: A range of window materials are available. Please contact your local sales representative for more information

Superior performance: A dynamic exchange gas model, suitable for low conductivity or high heat load samples, is available. Please contact your local sales representative for more information

Software control: Oxford Instruments electronics products are controllable through the software using RS232, USB (serial emulation), TCP/IP or GPIB interfaces. LabVIEW function libraries and virtual instruments are provided for Oxford Instruments electronics products to allow PC-based control and monitoring. These can be integrated into a complete LabVIEW data acquisition system

Temperature range: 3.4 to 300 K, may be extended up to 500 K and down to 2.3 K

Temperature stability: ± 0.1 K

System may also be run with liquid nitrogen, temperature range: 77 to 500 K

Liquid helium consumption rate at 4.2 K: < 0.55 l/hr

Cool down consumption: 1.5 litre (nominal)

Room Temperature to base temperature: approx. 25 min with pre-cooled transfer siphon

Sample change time: approx. 5 min (sample can be changed with the cryostat cold)

Weight: 3.7 kg

A typical system comprises of:

  • Cryostat
  • Sample holder
  • Spectroscopy windows 
  • MercuryiTC temperature controller

UV / Visible spectroscopy: Experiments at low temperatures reveal the interaction between the electronic energy levels and vibrational modes in solids.

Infra-red spectroscopy: Low temperature IR spectroscopy is used to measure changes in interatomic vibrational modes as well as other phenomena such as the energy gap in a superconductor below its transition temperature.

Raman spectroscopy: Lower temperatures result in narrower lines associated with the observed Raman excitations.

Photoluminescence: At low temperatures, spectral features are sharper and more intense, thereby increasing the amount of information available.

関連情報

その他アプリケーション

ナノマテリアルの成長と特性評価低次元構造の物性評価モジュール式光学分光法