オックスフォード・インストゥルメンツツの一部
拡張

MicrostatN

顕微鏡用途向け 77 K 液体窒素冷却クライオスタットシステム

  • 温度範囲77 K - 500 K

  • 短い冷却時間と低液体窒素消費量

  • 極めてコンパクトな設計と短い作動距離


お問い合わせ

  • 温度範囲77 K - 500 K
  • 77 K までの初期冷却時間は約10分間
  • 低寒剤消費量 < 0.5 L/時
  • 小型、コンパクト – 直径90mm 厚さ24mm
  • 反射測定および透過測定を可能とする構成
  • 2mm程度の短い作動距離
  • 厚さ8mmまでの試料まで対応可能
  • 簡単注入のための液体窒素デュワー装備
  • 試料への4-ピン電気配線により、即時測定が可能
  •  MercuryiTC 温度制御装置を装備
  • 1年間の標準保証
  • 1年間の標準保証

Low cryogen consumption: Brings significant benefits in terms of running cost

Simple: The experimental windows and sample holders can be easily changed

Versatile: A range of window materials are available. Please contact your local sales representative for more information

Software control: Oxford Instruments electronics products are controllable through the software using RS232, USB (serial emulation), TCP/IP or GPIB interfaces. LabVIEW function libraries and virtual instruments are provided for Oxford Instruments electronics products to allow PC-based control and monitoring. These can be integrated into a complete LabVIEW data acquisition system

Temperature range: 77 to 500 K

Temperature stability: ± 0.5 K

Liquid nitrogen consumption rate: 0.5 l/hr (nominal)

Room Temperature to base temperature: < 10 min with pre-cooled transfer siphon

Sample change time: approx. 30 min (cryostat must be warmed up to access the sample space)

Sample position stability: designed to give positional stability of the sample holder of approximately 1 µm

Cryostat weight: 0.4 kg

A typical system comprises of:

  • Cryostat
  • Transfer siphon
  • Gas flow
  • Temperature Controller
  • Accessories and Manuals
  • Software

Micro-FTIR: Study of molecular bonds in crystal lattices

Micro-Raman Scattering and inelastic light scattering: Study of molecular energy levels

Micro-luminescence: Studies of Quantum Dot structures in AS/GaHS

Micro-Photoluminescence / Micro-Photoluminescence: Study of semiconductors

Micro-luminescence: Quantum systems, dots/wires/wells

ご興味ございますか?

その他アプリケーション

ナノマテリアルの物性評価低次元構造の物性評価モジュール光学分光法モジュール式顕微分光法